Distribuições de Probabilidades

Quando aplicamos a Estatística na resolução de problemas administrativos, verificamos que muitos problemas apresentam as mesmas características o que nos permite estabelecer um modelo teórico para determinação da solução de problemas.

Os componentes principais de um modelo estatístico teórico:

- 1. Os possíveis valores que a variável aleatória X pode assumir;
- 2. A função de probabilidade associada à variável aleatória X;
- 3. O valor esperado da variável aleatória X;
- 4. A variância e o desvio-padrão da variável aleatória X.

Há dois tipos de distribuições teóricas que correspondem a diferentes tipos de dados ou variáveis aleatórias: a distribuição discreta e a distribuição contínua.

Distribuições Discretas

Descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são **finitos**. Por exemplo, uma *variável aleatória discreta* pode assumir somente os valores 0 e 1, ou qualquer inteiro não negativo, etc. Um exemplo de variável climatológica discreta são as tempestades com granizo.

Distribuição de Bernoulli

Característica do modelo

Se uma variável aleatória X **só pode** assumir os valores **0** (fracasso) e **1** (sucesso) com P(X = 0) = q e P(X = 1) = p com p + q = 1, então diremos que a variável aleatória X admite distribuição de Bernoulli.

Discrição do modelo

1.
$$X = \{0,1\}$$

2.
$$P(X = 0) = q$$

e
$$P(X = 1) = p;$$

3.
$$E(X) = p$$
;

4.
$$\sigma^2 = \text{Var}(X) = p x q$$

$$\sigma = Dp(X) = \sqrt{p \times q}$$

Podemos escrever o modelo do seguinte modo:

$$P(X = x) = p^{x} \cdot q^{1-x}$$

onde q = 1 - p.

• Esperança (média) e Variância:

Calcularemos a média e a variância da variável com distribuição de Bernoulli assim:

X	P(X)	X . P(X)	$X^2 \cdot P(X)$
0	q	0	0
1	p	р	p
	1	р	р

$$E(X) = p e Var(X) = p - p^2 = p(1 - p) = p . q$$

EXEMPLO:

No lancamento de uma moeda, a variável aleatória X denota o número de caras obtidas.

1.
$$X = \{0,1\};$$

2.
$$P(X = 0) = 1/2$$

$$P(X = 1) = 1/2;$$

3.
$$E(X) = 0 \times 1/2 + 1 \times 1/2 = 1/2$$
;

4.
$$\sigma^2 = \text{Var}(X) = 1/2 \times 1/2 = \frac{1}{4}$$

e
$$\sigma = Dp(X) = \sqrt{\frac{1}{4}} = 1/2.$$

EXERCÍCIO:

Uma urna contém 20 bolas brancas e 30 bolas vermelhas. Uma bola é retirada da urna e a variável aleatória X denota o número de bolas vermelhas obtidas. Calcule a média E(X), a Var(X) e o desvio-padrão de X.

Temos:
$$X = \begin{cases} 0 \rightarrow q = 20/50 = 2/5 \\ 1 \rightarrow p = 30/50 = 3/5 \therefore P(X=x) = (2/5)^{x} \cdot (3/5)^{1-x} \end{cases}$$

 $E(X) = p 2/5 \quad Var(X) = p \cdot q = (2/5) \cdot (3/5) = 6/25$

Distribuição Binomial

1. CONCEITUAÇÃO

Vamos, neste item, considerar experimentos que satisfaçam as seguintes condições:

- a. O experimento deve ser repetido, nas mesmas condições, um número finito de vezes (n).
- b. As provas repetidas devem ser independentes, isto é, o resultado de uma não deve afetar os resultados das sucessivas.
- c. Em cada prova deve aparecer um dos dois possíveis resultados: sucesso e insucesso.
- d. No decorrer do experimento, a probabilidade \mathbf{p} do sucesso e a probabilidade \mathbf{q} ($\mathbf{q} = 1 \mathbf{p}$) do insucesso manter-se-ão constantes.

Resolveremos problemas do tipo: determinar a probabilidade de se obterem **k** sucessos em **n** tentativas.

O experimento "obtenção de caras em cinco lançamentos sucessivos e independentes de uma moeda" satisfaz essas condições.

Sabemos que, quando da realização de um experimento qualquer em uma única tentativa, se a probabilidade de realização de um evento (sucesso) é p, a probabilidade de não-realização desse mesmo evento (insucesso) é 1 - p = q.

Suponhamos, agora, que realizemos a mesma prova n vezes sucessivas e independentes. A probabilidade de que um evento se realize **k** vezes nas provas é dada pela função:

$$f(x) = P(X = k) = \binom{n}{k} p^k q^{n-k}$$

Na qual:

P(X = k) é a probabilidade de que o evento se realize k vezes em n provas;

p é a probabilidade de que o evento se realize em uma só prova - sucesso;

q é a probabilidade de que o evento não se realize no decurso dessa prova - insucesso;

 $\binom{n}{k}$ é o coeficiente binomial de n sobre k, igual a $\frac{n!}{k!(n-k)!}$

Essa função, denominada lei binomial, define a distribuição binomial.

EXERCÍCIOS RESOLVIDOS

1. Uma moeda é lançada 5 vezes seguidas e independentes. Calcule a probabilidade de serem obtidas 3 caras nessas 5 provas?

Solução:

Temos:

$$N = 5 e k = 3$$

Pela lei binomial, podemos escrever:

$$P(X = 3) = {5 \choose 3} p^3 q^{5-3} = {5 \choose 3} p^3 q^2$$

Se a probabilidade de obtermos "cara" numa só prova (sucesso) é p = 1/2 e a probabilidade de não obtermos "cara" numa só prova (insucesso) é q = 1 - 1/2 = 1/2, então:

$$P(X=3) = {5 \choose 3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2 = \frac{5!}{3! \, 2!} \left(\frac{1}{8}\right) \left(\frac{1}{4}\right) = \frac{5x4x3x2x1}{3x2x1x2x1} \left(\frac{1}{8}\right) \left(\frac{1}{4}\right) = \frac{5}{16}$$

Logo:

$$P(X=3) = \frac{5}{16}$$

2. Dois times de futebol, A e B, jogam entre si 6 vezes. Encontre a probabilidade do time A ganhar 4 jogos.

Solução:

Temos:

$$N = 6, k = 4, p = \frac{1}{3}, q = 1 - \frac{1}{3} = \frac{2}{3}$$

Então:

$$P(X = 4) = {6 \choose 4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^2 = 15 \left(\frac{1}{81}\right) \left(\frac{4}{9}\right) = \frac{20}{243}$$

Logo:

$$P(X=4) = \frac{20}{243}$$

EXERCÍCIOS

- 1. Determine a probabilidade de obtermos exatamente 3 caras em 6 lances de uma moeda.
- 2. Jogando-se um dado três vezes, determine a probabilidade de se obter um múltiplo de 3 duas vezes.
- 3. Dois times de futebol, A e B, jogam entre si 6 vezes. Encontre a probabilidade do time A:
- a. ganhar dois ou três jogos;
- b. ganhar pelo menos um jogo.
- 4. A probabilidade de um atirador acertar o alvo é 2/3. Se ele atirar 5 vezes, qual a probabilidade de acertar exatamente 2 tiros?
- 5. Seis parafusos são escolhidos ao acaso da produção de certa máquina, que apresenta 10% de peças defeituosas. Qual a probabilidade de serem defeituosos dois deles?

RESPOSTAS:

- 1.5/32
- 2.2/9
- 3. a. 400/729 b. 665/729
- 4.40/243
- 5.9,8415%

2. ENTENDENDO A FÓRMULA

O gerente da loja estima que de 10 vendas realizadas, 3 são microcomputadores e 7 equipamentos eletrônicos. Qual a probabilidade de que uma das próximas 4 vendas seja um microcomputador?

Começamos por determinar as 4 próximas vendas e depois suas probabilidades de ocorrência.

Sendo E a venda de um equipamento eletrônico e M a de um microcomputador, os quatro resultados possíveis (eventos elementares) são: EEEM, EEME, EMEE e MEEE.

Dos dados do gerente deduzimos que 70% das vendas realizadas são de equipamentos eletrônicos E e 30% de microcomputadores M. Se a sequência de venda de um M for EEEM sua probabilidade será igual a:

$$P(EEEM) = 0.70 \times 0.70 \times 0.70 \times 0.30 = 0.30 \times 0.70^{3}$$

Aqui aplicamos a regra do produto, pois os eventos são independentes.

Aplicando o mesmo procedimento para os outros três eventos obteremos os mesmos resultados:

$$P(EEME) = 0,70 \times 0,70 \times 0,30 \times 0,70 = 0,30 \times 0,70^3$$

$$P(EMEE) = 0,70 \times 0,30 \times 0,70 \times 0,70 = 0,30 \times 0,70^{3}$$

$$P(MEEE) = 0.30 \times 0.70 \times 0.70 \times 0.70 = 0.30 \times 0.70^{3}$$

Finalmente, como os quatro eventos são mutuamente excludentes, a probabilidade de que uma das quatro próximas vendas seja UM microcomputador é obtida pela regra da soma, assim:

$$P(x=1) = P(EEEM) + P(EEME) + P(EMEE) + P(MEEE)$$

Onde x = 1 identifica a venda de um microcomputador.

$$P(x=1) = 4 \times (0,30 \times 0,70^3) = 0,4116$$
 ou

$$P(x=1) = {4 \choose 1} \times 0,30^1 \times 0,70^3 = 0,4116.$$

3. DISTRIBUIÇÃO BINOMIAL NO EXCEL

Vamos por meio de um exemplo fazer um histograma da distribuição binomial.

EXEMPLO 1. Uma experiência com distribuição binomial foi repetida 4 vezes seguidas. Considerando a probabilidade de sucesso p =0,50:

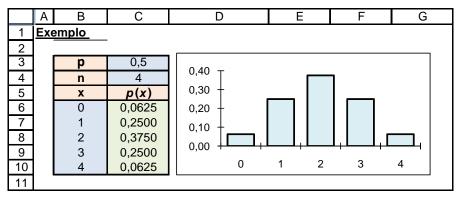
- a. Calcule as probabilidades de todos os possíveis sucessos x.
- b. Construa o gráfico da distribuição de probabilidades.

Solução:

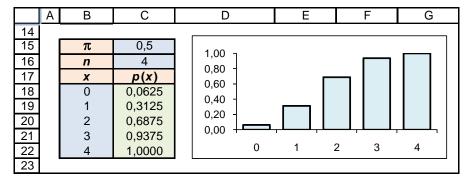
Com a fórmula $P(X=k)=\binom{n}{k}p^kq^{n-k}$ construa uma planilha como a mostrada abaixo



e a seguir com os dados da tabela construa o histograma:



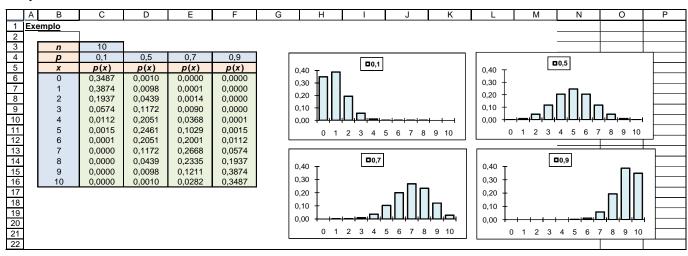
Continuando, podemos calcular a probabilidade de que x seja menor que 2 e de que x seja menor ou igual a 2. Para isto construímos a tabela e o gráfico de probabilidades acumuladas mostrados abaixo, onde temos que P(x<2) = 0,3125 e $P(x \le 2) = 0,6875$



EXEMPLO 2

Uma experiência com distribuição binomial foi repetida 10 vezes seguidas. Construa a tabela completa de probabilidades e o histograma de x considerando quatro valores de probabilidades de sucesso p=0,10, p=0,50, p=0,70 e p=1.

Solução:



A tabela abaixo fornece a probabilidade de ocorrerem x sucessos em n experiências com probabilidades de sucesso definidas na própria tabela.

	Α	В	С	D	E	F	G	Н	I	J	K	L	М
1	1 TABELA DA DISTRIBUIÇÃO BINOMIAL												
2													
3		n	7	Probabilidad	e de X	•							
4													
5		X	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95
6		0	0,6983	0,4783	0,2097	0,0824	0,0280	0,0078	0,0016	0,0002	0,0000	0,0000	0,0000
7		1	0,2573	0,3720	0,3670	0,2471	0,1306	0,0547	0,0172	0,0036	0,0004	0,0000	0,0000
8		2	0,0406	0,1240	0,2753	0,3177	0,2613	0,1641	0,0774	0,0250	0,0043	0,0002	0,0000
9		3	0,0036	0,0230	0,1147	0,2269	0,2903	0,2734	0,1935	0,0972	0,0287	0,0026	0,0002
10		4	0,0002	0,0026	0,0287	0,0972	0,1935	0,2734	0,2903	0,2269	0,1147	0,0230	0,0036
11		5	0,0000	0,0002	0,0043	0,0250	0,0774	0,1641	0,2613	0,3177	0,2753	0,1240	0,0406
12		6	0,0000	0,0000	0,0004	0,0036	0,0172	0,0547	0,1306	0,2471	0,3670	0,3720	0,2573
13		7	0,0000	0,0000	0,0000	0,0002	0,0016	0,0078	0,0280	0,0824	0,2097	0,4783	0,6983
14													

A tabela abaixo mostra a probabilidade acumulada de ocorrerem até x sucesso em n experiências com as probabilidades de sucesso definidas na própria tabela.

	Α	В	С	D	E	F	G	Н	I	J	K	L	М
1	TABELA DA DISTRIBUIÇÃO BINOMIAL												
2													
3		n	7	Probabilidad	e Acumulada	•							
4													
5		X	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95
6		0	0,6983	0,4783	0,2097	0,0824	0,0280	0,0078	0,0016	0,0002	0,0000	0,0000	0,0000
7		1	0,9556	0,8503	0,5767	0,3294	0,1586	0,0625	0,0188	0,0038	0,0004	0,0000	0,0000
8		2	0,9962	0,9743	0,8520	0,6471	0,4199	0,2266	0,0963	0,0288	0,0047	0,0002	0,0000
9		3	0,9998	0,9973	0,9667	0,8740	0,7102	0,5000	0,2898	0,1260	0,0333	0,0027	0,0002
10		4	1,0000	0,9998	0,9953	0,9712	0,9037	0,7734	0,5801	0,3529	0,1480	0,0257	0,0038
11		5	1,0000	1,0000	0,9996	0,9962	0,9812	0,9375	0,8414	0,6706	0,4233	0,1497	0,0444
12		6	1,0000	1,0000	1,0000	0,9998	0,9984	0,9922	0,9720	0,9176	0,7903	0,5217	0,3017
13		7	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
14													

4. ESPERANÇA, VARIÂNCIA e DESVIO PADRÃO do MODELO BINOMIAL

Aplicando os conceitos de valor esperado nas distribuições discretas, substituindo a expressão P(x) da distribuição binomial naquelas expressões obteremos o *valor esperado* $E(x) = \mu$, a variância $Var(X) = \sigma^2$ e o desvio padrão σ da distribuição binomial. Perceba o leitor que estes resultados <u>não</u> dependem do número de sucessos x.

Parâmetros da distribuição binomial

A média, a variância e o desvio padrão são obtidos com:

$$\mu = n x p$$
 $\sigma^2 = n x p x (1 - p)$ $\sigma = \sqrt{n x p x (1 - p)}$

EXEMPLO 3

São realizadas 10 experiências com probabilidade de sucesso p = 0,10. Considerando que o experimento tem distribuição binomial, calcular a média e o desvio padrão

Solução:

Aplicando as fórmulas temos:

$$\mu = n \times p = 10 \times 0, 1 = 1$$

$$\sigma = \sqrt{n \, x \, p \, x \, (1 - p)} = \sqrt{10 \, x \, 0,10 \, x \, (1 - 0,10)} = 0,9487$$

EXEMPLO 4

Você tem uma carteira com 15 ações. No pregão de ontem 75% das ações na bolsa de valores caíram de preço. Supondo que as ações que perderam valor têm distribuição binomial:

- Quantas ações da sua carteira você espera que tenham caído de preço?
- Qual o desvio padrão das ações que tem na carteira?
- Qual a probabilidade que as 15 ações da carteira tenham caído?
- Qual a probabilidade que tenham caído de preço exatamente 10 ações?
- Qual a probabilidade que treze ou mais ações tenham caído de preço?

Solução:

Como 75% das ações caíram de preço, o número de ações da carteira que devem ter caído de preço será $11,25 = 0,75 \times 15$. O desvio padrão foi:

$$\sigma = \sqrt{n \, x \, p \, x \, (1 - p)} = \sqrt{15 \, x \, 0.75 \, x \, (1 - 0.75)} = 1,67$$

$$P(X=15) = \binom{n}{k} p^k q^{n-k} = \binom{15}{15} 0.75^{15} (1-0.75)^{15-15} = \frac{15!}{13! (15-15)!} (0.75)^{15} (0.25)^0 = 0.0134$$

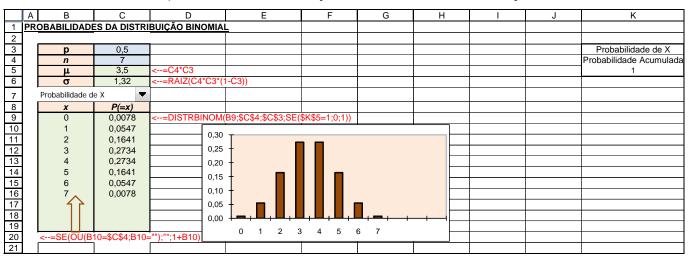
De forma equivalente, a probabilidade que tenham caído de preço exatamente 10 ações é P(x = 10) = 0,1651, e a probabilidade que treze ou mais ações tenham caído de preço é obtida com $P(x \ge 13) = P(x = 13) + P(x = 14) + P(x = 15) = 0,2361$

O Excel dispõe de funções estatísticas para realizar cálculos com a distribuição normal. As sintaxes dessas funções são as seguintes:

DISTRBINOM(num_s;tentativas;probabilidade_s;cumulativo)

Esta função dá a probabilidade ou a probabilidade acumulada do num_s conforme o valor do argumento cumulativo.

- Se o argumento cumulativo for FALSO, a função dará a probabilidade do número de sucessos num_s com probabilidade_s de sucesso para um número de tentativas independentes.
- Se o argumento cumulativo for VERDADEIRO, a função dará a probabilidade acumulada do número máximo de sucessos num_s com probabilidade_s de sucesso para um número de tentativas independentes.



Comparando a parte teórica com a função DISTRBINOM teremos:

• Se em n experiências com distribuição binomial acontecerem x sucessos com probabilidade p, a probabilidade de ocorrerem x sucessos P(x) será obtida com a função estatística:

DISTRBINOM(num_s;tentativas;probabilidade_s;FALSO)

Esta função corresponde à expressão: $P(X) = \binom{n}{x} p^x q^{n-x}$, para x = 0, 1, 2, ..., n.

• Se em n experiências com distribuição binomial acontecerem x sucessos com probabilidade p, a probabilidade acumulada de ocorrerem até x sucessos P(x) será obtida com a função estatística:

DISTRBINOM(num_s;tentativas;probabilidade_s;VERDADEIRO)

Esta função corresponde à expressão:

$$P(x) = \sum_{i=0}^{x} {n \choose i} p^{i} (1-p)^{n-i}$$

Na Figura acima, selecionando a opção de cálculo na caixa de combinação do modelo, você poderá calcular a probabilidade de x sucessos e a probabilidade acumulada até x sucessos de n=10 repetições do experimento.

EXEMPLO 5

Seja uma experiência com distribuição binomial com n=4 e a probabilidade de sucesso p=0,3. Calcular a probabilidade de ter 2 sucessos e a probabilidade de ter 2 sucessos.

Solução:

A probabilidade de ter 2 sucessos é P(x=1) = 0,2646, valor obtido com a fórmula:

= DISTRBINOM(2;4;0,3;FALSO)

Da mesma maneira a probabilidade de ter até 2 sucessos é $P(x \le 2) = 0,9163$, valor obtido com a fórmula:

= DISTRBINOM(2;4;0,3;VERDADEIRO).

Aqui vai um segmento de planilha que realiza este cálculo:

	Α	В	С	D						
22	CÁ	CÁLCULO DE PROBABILIDADES BINOMIAIS								
23										
24		р	0,3							
25		n	4							
26		X	2							
27		P(x=2)	0,2646							
28		P(x=2) P(x<=2)	0,9163							
29		μ	1,2							
30		σ	0,92							
31										

3.1 - OUTRAS FUNÇÕES ESTATÍSTICAS ASSOCIADAS À DISTRIBUIÇÃO BINOMIAL

PROB(intervalo_x;intervalo_prob;limite_inferior;limite_superior)

A função estatística PROB dá a **probabilidade acumulada** entre o *limite inferior* e o *limite superior*, ambos incluídos, do intervalo_x de valores e o intervalo_prob de probabilidades associadas aos valores x.

A figura abaixo mostra um modelo em que utilizamos a função PROB com os dados do Exemplo 5

	В	С	D	Е	F	G	Н	I	J	K	L
33	ção PROB										
34		•	_								
35	р	0,3									
36	n	4									
37	X	P(=x)									
38	0	0,2401	Limite inferior								
39	1	0,4116	Limite superior	3							
40	2	0,2646	Prob. Acumulada			88:B42;C38:C4					
41	3	0,0756	PROB - matriz	0,7518	<=PROB({0;1;2;3;4};{0,2401;0,4116;0,2646;0,0756;0,0081};E38;E39)						
42	4	0,0081	om DISTRBINOM	0,7518	<=DISTRBIN	NOM(E39;C36;	C35;VERDAD	EIRO)-SE(E38	=0;0;DISTRBI	NOM(E38-1;C36;C35;VEF	(DADEIRO))
43											

- No intervalo B38:B42 foram registrados os valores de x, e no intervalo C38:C42 foram calculadas as probabilidades correspondentes, como mostra a figura acima.
- No intervalo E38:E39 foram registrados o limite inferior e o limite superior de x, respectivamente, valores 1 e 3.
- Na célula E40, com a fórmula: =PROB(B38:B42;C38:C42;E38:E39) foi calculada a probabilidade acumulada $P(1 \le x \le 3) = 0.8448$. Verifique que a probabilidade acumulada $P(1 \le x \le 3) = P(x \le 3) P(x = 0) = 0.8704 0.0256 = 0.8448$.
- O mesmo resultado é obtido informando os dados em forma de matriz, registrando na célula E41 a fórmula: =PROB({0;1;2;3;4};{0,2401;0,4116;0,2646;0,0756;0,0081};E38;E39)
- Com a função DISTRBINOM, registrando na célula E42 a fórmula:
 - =DISTRBINOM(E39;C36;C35;VERDADEIRO)-SE(E38=0;0;DISTRBINOM(E38-1;C36;C35;VERDADEIRO))

Perceba que ao valor do num_s da segunda parcela da fórmula foi subtraído um. Entretanto, quando o limite inferior de x for zero, o argumento num_s da segunda parcela da fórmula acima será zero.

CRIT.BINOM(tentativas;probabilidade_s;alfa)

A função estatística CRIT.BINOM dá o **menor número de sucessos** para o qual a distribuição binomial *acumulada* é <u>maior ou igual</u> ao argumento alfa. Por exemplo, com os dados do Exemplo 5, se alfa = 0,50 o número de sucessos menor ou igual a 0,50 é dois, como mostra a figura abaixo.

	Α	В	С	D	Е	F
45	Fur	nção CRIT.BIN	<u>IOM</u>			
46			-			
47		р	0,3			
48		n	4			
49		X	P(<=x)			
50		0	0,2401	<=DISTRBINOM(B50;\$C\$48;\$C\$47;	VERDADEIRO
51		1	0,6517			
52		2	0,9163			
53		3	0,9919			
54		4	1,0000			
55		alfa	0,6000			
56		X	1	<=CRIT.BINOM(0	C48;C47;C55)	
57						

Por exemplo, a função CRIT.BINOM determina o número máximo de peças defeituosas de um lote de produção sem rejeitar o lote inteiro. Para valores exatos de probabilidade acumulada, a função estatística CRIT.BINOM é inversa da função estatística DISTRBINOM com o argumento cumulativo VERDADEIRO.

Distribuição de Poisson

A *distribuição de Poisson* é empregada em experimentos, nos quais não se está interessado no número de sucessos obtidos em *n* tentativas, como ocorre no caso da distribuição Binomial, mas sim no número de sucessos ocorridos durante um **intervalo contínuo**, que pode ser um intervalo de tempo, espaço, etc. Como por exemplo:

- ▶ O número de suicídios ocorridos em uma cidade durante um ano;
- O número de acidentes automobilísticos ocorridos numa rodovia em um mês;
- Número de chegadas a um caixa automático de um banco durante um período de 15 minutos
- A probabilidade de um carro chegar a um posto de gasolina em quaisquer dois períodos de tempo de mesmo tamanho.
- A chegada ou não chegada de um carro em qualquer período de tempo independentemente da chegada ou não chegada de outro carro em qualquer outro período.
- ▶ Defeitos por unidade (m², m, etc.) por peça fabricada
- Erros tipográficos por página, em um material impresso
- Carros que passam por um cruzamento por minuto, durante certa hora do dia.
- Usuários de computador ligados à Internet

Note que nos exemplos acima, não há como determinar-se a probabilidade de ocorrência de um sucesso, mas sim a frequência média de sua ocorrência, como, por exemplo, dois suicídios por ano, a qual será que denominada λ .

É, então, uma distribuição de probabilidade **discreta** que se aplica a ocorrência de eventos ao longo de <u>intervalos</u> especificados. A *variável aleatória* é o <u>número de ocorrência do evento no intervalo</u>. Os intervalos podem ser de tempo, distância, área, volume ou alguma unidade similar.

Uma variável aleatória **X** admite *distribuição de Poisson* se:

- 1. $X = \{0, 1, 2, ...\}$ (não tem limites);
- 2. $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$, k = 0, 1, 2, ...; é a probabilidade de **k** ocorrências em um intervalo
- 3. $E(X) = \mu = \lambda$;
- 4. Var $(X) = \sigma^2 = \lambda$.

Prova das propriedades 3 e 4:

$$E(X) = \sum_{x=0}^{n} x P(X = x) = \sum_{x=0}^{n} x \frac{e^{-\lambda} \lambda^{x}}{x!} = \sum_{x=0}^{n} \frac{e^{-\lambda} \lambda^{x}}{(x-1)!} = \sum_{s=-1}^{n-1} \frac{e^{-\lambda} \lambda^{s+1}}{s!} = \lambda \sum_{s=-1}^{n-1} \frac{e^{-\lambda} \lambda^{s}}{s!} = \lambda$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} P(X = x) = \sum_{x=0}^{n} x^{2} \frac{e^{-\lambda} \lambda^{x}}{x!} = \sum_{x=0}^{n} x \frac{e^{-\lambda} \lambda^{x}}{(x-1)!} = \sum_{s=-1}^{n-1} (s+1) \frac{e^{-\lambda} \lambda^{s+1}}{s!} = \lambda \sum_{s=-1}^{n-1} (s+1) \frac{e^{-\lambda} \lambda^{s}}{s!}$$
$$= \lambda \left[\sum_{s=-1}^{n-1} s \frac{e^{-\lambda} \lambda^{s}}{s!} + \sum_{s=-1}^{n-1} \frac{e^{-\lambda} \lambda^{s}}{s!} \right] = \lambda [\lambda + 1] = \lambda^{2} + \lambda$$

$$Var(X) = E(X^2) - [E(X)]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Uma distribuição de Poisson difere de uma distribuição binomial nestes aspectos fundamentais:

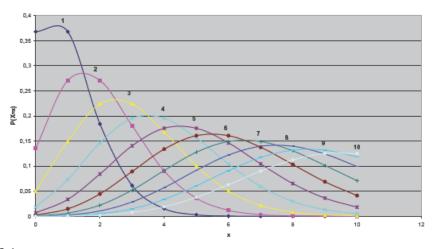
- 1. A distribuição binomial é afetada pelo tamanho da amostra n e pela probabilidade p, enquanto que a distribuição de Poisson é afetada apenas pela média _;
- 2. Na distribuição binomial, os valores possíveis da variável aleatória X são 0; 1; 2; ___; n, mas a distribuição de Poisson têm os valores de X de 0; 1; 2; ___, sem qualquer limite superior.

Obs: O parâmetro λ é usualmente referido como taxa de ocorrência.

Propriedades do experimento de Poisson:

- A probabilidade de uma ocorrência é a mesma para quaisquer dois intervalos
- A ocorrência ou não ocorrência em qualquer intervalo é independente da ocorrência ou não-ocorrência em qualquer intervalo.

Distribuição de Probabilidades de Poisson



EXEMPLO 1

O Corpo de Bombeiros de uma determinada cidade recebe, em média, 3 chamadas por dia. Qual a probabilidade de receber:

a) 4 chamadas num dia

 λ = 3 chamadas por dia em média

$$P(X = 4) = \frac{e^{-\lambda} \lambda^k}{k!} = \frac{e^{-3} 3^4}{4!} = 0,1680 \text{ ou } 16,80\%$$

b) Nenhuma chamada em um dia

$$P(X = 4) = \frac{e^{-\lambda}\lambda^k}{k!} = \frac{e^{-3}3^0}{0!} = 0.0498 \text{ ou } 4.98\%$$

c) 20 chamadas em uma semana.

X = número de chamadas por dia

Y = número de chamadas por semana

 $E(X) = \lambda = 3$ chamadas por dia $\Rightarrow E(Y) = \lambda^* = 7 \times E(X) = 21$ chamadas por semana.

$$P(Y = 20) = \frac{e^{-\lambda} \lambda^k}{k!} = \frac{e^{-21} 21^{20}}{20!} = 0.0867 \text{ ou } 8.67\%$$

EXEMPLO 2

Uma central telefônica tipo PABX recebe uma *média* de 5 chamadas por minuto. Qual a probabilidade deste PABX não receber nenhuma chamada durante um intervalo de 1 minuto?

$$P(X=0) = \frac{5^{\circ}.e^{-5}}{0!} = e^{-5} = 0,0067$$

 $X = v. a. n^{\circ}$ de chamadas em um intervalo de tempo $\lambda = taxa$ de ocorrência de chamadas (n° esperado de chamadas)

Aproximação da distribuição Binomial a Poisson.

Pode-se demonstrar que uma distribuição Binomial, cujo evento de interesse (sucesso) é raro (p muito pequeno e n muito grande), tende para uma distribuição de Poisson. Na prática, a aproximação é considerada boa quando $n \ge 50$ e p ≤ 0.10 .

Aproximação: Sabe-se que se $X \sim B(n; p)$, E(X) = np, então f = E(X) = np

EXEMPLO 3

A probabilidade de um indivíduo sofrer uma reação alérgica, resultante da injeção de determinado soro é de 0,01. Determinar a probabilidade de entre 200 indivíduos, submetidos a este soro, nenhum sofrer esta reação alérgica.

$$X \sim B(200; 0, 01) \Rightarrow E(X) = n.p = 200x0,01 = 2 = \lambda$$

 $P(X = 2) \approx \frac{e^{-\lambda} \lambda^k}{k!} = \frac{e^{-2} 2^0}{0!} = 0,1353 \text{ ou } 13,53\%$

2. DISTRIBUIÇÃO DE POISSON NO EXCEL

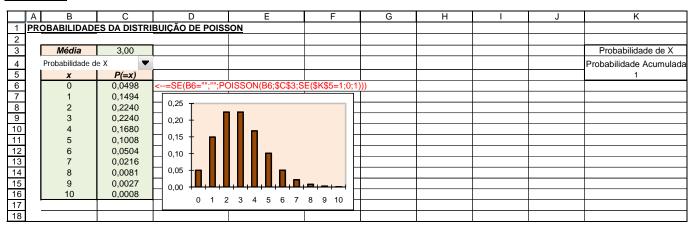
O Excel dispõe da função estatística POISSON cuja sintaxe é:

POISSON(x;média;cumulativo)

A função estatística POISSON dá a probabilidade ou a probabilidade acumulada conforme o valor do argumento *cumulativo*:

- Se o argumento cumulativo for FALSO a função dará a probabilidade de x considerando a média. O resultado P(x=4) = 16,80% é obtido com a fórmula: = POISSON(4;3;FALSO).
- Se o argumento cumulativo for VERDADEIRO a função dará a probabilidade acumulada até x considerando a média. O resultado P(x≤4)= 81,53% foi obtida com a fórmula: =POISSON(4;3;VERDADEIRO).

A Figura mostra o modelo **Probabilidades da Distribuição de Poisson** com os dados do Exemplo 1. Selecionando a opção de cálculo na caixa de combinação do modelo pode-se calcular a <u>probabilidade</u> de **x** ocorrências e a <u>probabilidade</u> acumulada de até **x** ocorrências



EXEMPLO 4

O erro de digitação cometido pelos caixas é 0,35 por hora. Qual a probabilidade de que um caixa cometa 2 erros numa hora?

Solução

A probabilidade P(x = 2) = 4,32 é obtida com a fórmula de distribuição de Poisson:

$$P(X = 2) \cong \frac{e^{-\lambda} \lambda^k}{k!} = \frac{e^{-0.35} 0.35^2}{2!} = 0.04316 \text{ ou } 4.316\%.$$

A Figura abaixo mostra o cálculo realizado na planilha

	Α	В	С	D	E	F	
19	CÁ	LCULO DE PR	ROBABILIDAD				
20							
21		Média	0,35				
22		X	2				
23		P(x=2)	0,0432	<=POISSON(C22	2;C21;FALSO)		
24		P(x<=2)	0,9945	<=POISSON(C22;C21;VERDADEIRO)			
25							

Distribuição Geométrica

Suponha-se um experimento, no qual estamos interessados apenas na ocorrência ou não de um determinado evento, como, por exemplo, o sexo do filho de uma determinada mulher ser feminino. E, assim como na distribuição binomial, que esse experimento seja repetido um número n de vezes, que em cada repetição seja independente das demais e que a probabilidade de sucesso p em cada repetição seja constante. Suponha-se que o experimento seja repetido até que ocorra o primeiro sucesso (o sexo do filho seja feminino).

Então a variável aleatória: $X = \text{número de tentativas até que se obtenha o primeiro sucesso, seguirá uma$ *distribuição geométrica*, com parâmetro <math>p (probabilidade de sucesso) . Simbolicamente $X \sim G(p)$.

Função de Probabilidade

Como o experimento será repetido até que se obtenha o primeiro sucesso, e considerando que esse ocorra na k-ésima repetição, deverão ocorrer k-1 fracassos antes que o experimento seja encerrado. Assim, a probabilidade de que a variável aleatória X= número de repetições até se obter o primeiro sucesso é:

$$P(X = x) = pq^{x-1}$$

com

p = probabilidade de "sucesso"; q = 1 - p = probabilidade de "fracasso"

Parâmetros característicos

$$E(X) = \frac{1}{p}$$

$$Var(X) = \frac{q}{p^2}$$

EXEMPLO 1

Um casal com problemas para engravidar, recorreu a uma técnica de inseminação artificial no intuito de conseguir o primeiro filho. A eficiência da referida técnica é de 0,20 e o custo de cada inseminação *U*\$2000,00.

a) Qual a probabilidade de que o casal obtenha êxito na terceira tentativa?

$$P(X = k) = pq^{k-1} = (0.2)(0.8)^3 = 0.128 \text{ ou } 12.80\%$$

b) Qual o custo esperado deste casal para obter o primeiro filho?

$$E(X) = \frac{1}{p} = \frac{1}{0.2} = 5$$

Custo esperado = $5 \times 2000,00 = U$10.000,00$

EXEMPLO 2

Bob é o jogador de basquete da faculdade. Ele é um lançador de arremessos livres 70%. Isto significa que sua probabilidade de acertar um arremesso livre é 0,70. Durante uma partida, qual é a probabilidade que Bob acerte seu primeiro arremesso livre no seu quinto arremesso?

Solução

Este é um exemplo de uma distribuição geométrica, que como veremos é um caso especial de uma distribuição binomial negativa. Logo, usando a fórmula da distribuição geométrica termos:

$$P(X = k) = pq^{k-1} = (0.7)(0.3)^4 = 0.00567$$
 ou 0.567%

Distribuição Binomial Negativa¹

Nas mesmas condições em que foi definida a distribuição geométrica, e considerando que o experimento será repetido até que se obtenha o r-ésimo sucesso, então a variável X = número de tentativas até se obter o r-ésimo sucesso seguirá a distribuição binomial negativa.

Um <u>experimento</u> binomial negativo é um experimento estatístico que tem as seguintes propriedades:

- 0 experimento consiste de x tentativas repetidas.
- Cada tentativa pode resultar em apenas dois resultados possíveis. Podemos chamar um destes resultados de sucesso e o outro de fracasso.
- A probabilidade de sucesso, denotada por p, é a mesma em cada tentativa.
- As tentativas são independentes; isto é, o resultado de uma tentativa não afeta o resultado das outras tentativas.
- O experimento continua até que r sucessos sejam observados, onde r é especificado antecipadamente.

Considere o seguinte experimento estatístico. Você lança uma moeda repetidamente e conta o número de vezes que sai cara como resultado. Você continua lançando a moeda até que tenha saído 5 vezes cara. Este é um experimento binomial negativo porque:

- O experimento consiste de tentativas repetidas. Lançamos uma moeda repetidamente até que cara tenha saído 5 vezes.
- Cada tentativa pode resultar em apenas dois resultados possíveis cara ou coroa.
- A probabilidade de sucesso é constante 0,5 em cada tentativa.
- As tentativas são independentes; isto é, obter cara numa tentativa não afeta se obteremos cara nas outras tentativas.
- O experimento continua até que um número fixo de sucessos tenha ocorrido; neste caso,5 caras.

NOTAÇÃO

A seguinte notação é útil, quando falamos a respeito da probabilidade binomial negativa:

- K: O número de tentativas exigido para se produzir r sucessos num experimento binomial negativo.
- r: O número de sucessos no experimento binomial negativo.
- p: A probabilidade de sucesso numa tentativa individual.
- q: A probabilidade de fracasso numa tentativa individual. (Isto é igual a 1 p).
- b*(k;r,p): Probabilidade binomial negativa a probabilidade que um experimento binomial negativo de xtentativas resulte em r sucessos na k-ésima tentativa, quando a probabilidade de sucesso na tentativa individual é p.
- $C_{(r)}^{(n)}$: O número de combinações de n coisas, tomando r coisas de cada vez.

Variável aleatória binomial negativa

Uma **variável aleatória binomial negativa** é o número <u>X de tentativas repetidas</u> para produzir **r** sucessos num *experimento* binomial negativo. A distribuição de probabilidade de uma variável aleatória binomial negativa é chamada de **distribuição binomial negativa**.

Suponha que lancemos uma moeda repetidamente e contemos o número de caras (sucessos). Se continuarmos lançando a moeda até que tenha saído cara 2 vezes, estamos conduzindo um experimento binomial negativo. A variável aleatória binomial negativa é o número de lançamentos exigidos para se conseguir cara 2 vezes. Neste exemplo, o número de moedas lançadas é uma variável aleatória que pode assumir qualquer valor inteiro entre $2 e +\infty$. A distribuição de probabilidade binomial negativa para este exemplo é apresentada abaixo:

Número de Moedas Lançadas	Probabilidade
2	0,25
3	0,25
4	0,1875
5	0,125
6	0,078125
7 ou mais	0,109375

Função de Probabilidade

¹ Também conhecida como distribuição de Pascal

Para que o r-ésimo sucesso ocorra na k-ésima tentativa é necessário que $\underline{\text{ocorra}}$ um sucesso nesta tentativa (repetição do experimento) e que tenham ocorridos (r-1) sucessos nas (k-1) repetições anteriores². Dado que a probabilidade de ocorrência de sucesso, numa dada repetição do experimento é dada por p e a probabilidade de ocorrerem r-1 sucessos em k-1 repetições, sendo estes dois eventos independentes, a probabilidade de que o r-ésimo sucesso ocorra na k-ésima repetição do experimento é dada por:

$$b^*(X=k;r,p) = p \cdot [C_{(r-1)}^{(k-1)} p^{r-1} q^{(k-1)-(r-1)}] = C_{(r-1)}^{(k-1)} p^r q^{k-r} \quad ; \; k \geq r$$

onde:

p = probabilidade de "sucesso"; q = 1 - p = probabilidade de "fracasso"

Parâmetros característicos:

$$E(X) = \frac{r}{p}$$

$$Var(X) = \frac{rq}{p^2}$$

EXEMPLO 1

Bob é o jogador de basquete da faculdade. Ele é um lançador de arremessos livres 70%. Isto significa que sua probabilidade de acertar um arremesso livre é 0,70. Durante uma partida, qual é a probabilidade que Bob acerte seu terceiro arremesso livre no seu quinto arremesso?

Solução

Este é um exemplo de um experimento binomial negativo. A probabilidade de sucesso (p) é 0,70, o número de tentativas (k) é 5, e o número de sucessos r é 3. Para resolver este problema, entremos com estes valores na fórmula (fmp) da binomial negativa

$$b^*(X = 5; 3,0,7) = C_{(2)}^{(4)}0,7^30,3^5 = 6.0,343.0,09 = 0,18522$$

2. DISTRIBUIÇÃO BINOMIAL NEGATIVA NO EXCEL

O Excel dispõe da função estatística DIST.BIN.NEG cuja sintaxe é:

Esta função dá a probabilidade de acontecer o número determinado de falhas ou insucesso ($num_f = k-r$) antes de acontecer um número r de sucessos (num_s) com probabilidade de sucesso (probabilidade s) constante.

Por exemplo, a probabilidade de ocorrerem 4 falhas antes de acontecerem 3 sucessos com probabilidade de sucesso constante 0,40 é igual a 12,44%, valor obtido com a fórmula: = DIST.BIN.NEG(4;3;0,4) na planilha abaixo:

	Α	В	С	D	Е					
1	Fur	ıção DIST.BIN	I.NEG							
2										
3		р	0,4							
4		X	3							
5		não x	P(x)							
6		0	0,0640							
7		1	0,1152							
8		2	0,1382							
9		3	0,1382							
10		4	0,1244	<=DIST.BIN.NEG	G(B10;\$C\$4;\$C\$3)					

É fácil de verificar que se o número de falhas for 0, a função DIST.BIN.NEG dá o mesmo resultado da função BINOMDIST, considerando que o número de experimentos seja igual ao número de sucessos e o argumento cumulativo FALSO: DIST.BIN.NEG(0;2;0,40 = DISTRBINOM(2;2;0,40;Falso).

² No exemplo anterior, vemos, pela tabela, que a probabilidade binomial negativa de se obter a segunda cara no sexto lançamento da moeda é 0,078125.

Distribuição Hipergeométrica

Um experimento hipergeométrico é um experimento estatístico que tem as seguintes propriedades:

- Uma amostra de tamanho n é selecionada aleatoriamente sem reposição de uma população de N itens.
- Na população, k itens podem ser classificados como sucessos e N k itens podem ser classificados como fracassos.

Considere o seguinte experimento estatístico. Você tem uma urna de 10 bolinhas de gude – 5 vermelhas e 5 verdes. Você seleciona aleatoriamente 2 bolinhas de gude sem reposição e conta o número de bolinhas vermelhas que você selecionou. Este seria um experimento hipergeométrico.

Note que não será um experimento binomial. Um experimento binomial exige que a probabilidade de sucesso seja constante em cada tentativa. Com o experimento acima, a probabilidade de um sucesso muda em cada tentativa. No início, a probabilidade de selecionar uma bolinha vermelha é 5/10. Se você selecionar uma bolinha vermelha na primeira tentativa, a probabilidade de selecionar uma bolinha vermelha na segunda tentativa é 4/9. E se você selecionar uma bolinha verde na primeira tentativa, a probabilidade de selecionar uma bolinha vermelha na segunda tentativa é 5/9.

Note ainda que se você selecionou as bolinhas com reposição, a probabilidade de sucesso não mudaria. Ela seria 5/10 em cada tentativa. Então, este seria um experimento binomial.

NOTAÇÃO

A seguinte notação é útil, quando falamos a respeito da probabilidade hipergeométrica e distribuições hipergeométricas:

- N: O número de itens na população.
- k: O número de itens na população que são classificados como sucessos.
- n: O número de itens na amostra.
- X: O número de itens na amostra que são classificados como sucessos.
- $C_{(x)}^{(k)}$: O número de combinações de k coisas, tomando x coisas de cada vez.
- h(x;N,n,k): Probabilidade hipergeométrica a probabilidade que um experimento hipergeométrico de ntentativas resulte em exatamente x sucessos, quando população consistir de N itens, k dos quais são classificados como sucessos.

Função de Probabilidade

Uma variável aleatória hipergeométrica X é o número de sucessos que resulta de um experimento hipergeométrico. A distribuição de probabilidades de uma variável aleatória hipergeométrica é chamada função distribuição hipergeométrica.

$$h(X = x; N, n, k) = \frac{C_x^k C_{(n-x)}^{(N-k)}}{C_n^N}$$

Parâmetros característicos:

Fazendo
$$\frac{k}{N} = p$$
 e $\frac{N-k}{N} = q$ tem-se

$$E(X) = n \cdot p$$

$$Var(X) = n \cdot p \cdot q \cdot \frac{N-n}{N-1}$$

EXEMPLO 1

No fichário de um hospital, estão arquivados os prontuários dos de 20 pacientes, que deram entrada no PS apresentando algum problema cardíaco. Destes 5 sofreram infarto.

Retirando-se uma amostra ao acaso de 3 destes prontuários, qual a probabilidade de que dois deles sejam de pacientes que sofreram infarto?

Solução:

EXEMPLO 2

Suponha que selecionemos aleatoriamente 5 cartas baralho sem reposição de um de um maço ordinário de jogo de baralho. Qual é a probabilidade de obter exatamente 2 cartas de baralho vermelhas (isto é, copas ou ouros)?

Solução:

N = 52 k = 26 cartas vermelhas n = 5 cartas selecionadas aleatoriamente X = 2

$$h(X = 2; 52,5,26) = \frac{C_2^{26}C_{(5-2)}^{(52-26)}}{C_5^{52}} = \frac{C_2^{26}C_{(3)}^{(26)}}{C_5^{52}} = \frac{325 \times 2.600}{2.598.960} = 0,32513 \text{ ou } 32,51\%$$

	Α	В	С	D			
1	Cálculo das Probabilidades						
2							
3	C(26,2)	325	<=COMBIN(26;2)				
4	C(26,3)	2600	<=COMBI	N(26;3)			
5	C(52,5)	2598960	<=COMBI	N(52;5)			

Assim a probabilidade de selecionar aleatoriamente 2 cartas vermelhas é 32,51%

EXEMPLO 3

Quando é feita amostragem de população finita sem reposição, a distribuição binomial <u>não</u> pode ser usada porque os eventos não são independentes. Daí então a distribuição hipergeométrica é usada. Esta é dada por

$$P_{hipergeométrica} = \frac{\binom{N-X_t}{n-X}\binom{X_t}{X}}{\binom{N}{n}}$$
 distribuição hipergeométrica

Ela mede o número de sucessos X numa amostra de tamanho n extraída aleatoriamente e sem reposição de uma população de tamanho N, da qual X_t itens têm a característica de denotar sucesso.

- a. Usando a fórmula, determine a probabilidade de extrair 2 homens numa amostra de 6 selecionada aleatoriamente sem reposição de um grupo de 10 pessoas, 5 das quais são homens.
- b. Qual resultado teria sido se tivéssemos (incorretamente) usado a distribuição binomial?

Solução

a. Aqui X = 2 homens, n = 6, N = 10 e $X_t = 5$

$$P_{hipergeom\acute{e}trica} = \frac{\binom{10-5}{6-2}\binom{5}{2}}{\binom{10}{6}} = \frac{\binom{5}{4}\binom{5}{2}}{\binom{10}{6}} = \frac{\frac{5!}{4! \ 1! \ 2! \ 3!}}{\frac{10!}{6! \ 4!}} = \frac{(5)(10)}{210} \approx 0,24$$

b.
$$P(2) = \frac{n!}{X!(n-X)!} p^X (1-p)^{n-X} = \frac{6!}{2!4!} (\frac{1}{2})^2 (\frac{1}{2})^4 = \frac{15}{64} = 0,23$$

Seria notado que a amostra é muito pequena em relação à população (digamos, menos do que 5% da população), amostragem sem reposição tem pouco efeito na probabilidade de sucesso em cada tentativa e a distribuição binomial (que é mais fácil de usar) é uma boa aproximação para a distribuição hipergeométrica.

2. DISTRIBUIÇÃO HIPERGEOMÉTRICA NO EXCEL

O Excel dispõe da função estatística DIST.HIPERGEOM cuja sintaxe é:

DIST.HIPERGEOM(exemplo s;exemplo núm;população s;num população))

Esta função dá a probabilidade de acontecer um **número determinado de sucessos** na <u>amostra</u> exemplo_s, conhecidos o tamanho da amostra exemplo_núm, o número de sucessos na população população_s e o tamanho da população num_população. Por exemplo, a probabilidade de acontecerem 3 sucessos na amostra, conhecidos o tamanho da amostra 5, o número de sucessos na população 90 e o tamanho da população 500 é igual a **0,0386**, valor obtido com a fórmula: = DIST.HIPERGEOM(3;5;90;500) como mostra a planilha abaixo:

	Α	В	С	D	Е	F
13	Fun	nção DIST.HIPERGEOM				
14				_		
15	2	x = nº de sucesso na amostra	3			
16		n = tamanho da amostra	5			
17		k=nº sucesso população	90			
18		N=tamanho população	500			
19		<i>P</i> (<i>x</i>)	0,0386	<=DIST.HIPERGE	EOM(C15;C16;C17	;C18)
20				•		

EXERCÍCIOS RESOLVIDOS

1. Suponha que selecionemos 5 cartas de baralho de um maço ordinário de jogo de baralho. Qual a probabilidade de obter 2 copas ou menos?

Solução

N=52 k=13 copas no maço n=5 cartas selecionadas aleatoriamente X=0 até 2 Liguemos estes valores na fórmula hipergeométrica como segue:

	Α	В	С	D						
1	C	Cálculo das Probabilidades								
2										
3	C(13,0)	1	<=COMBI	N(13;0)						
4	C(39,5)	575757	<=COMBI	N(39;5)						
5	C(52,5)	2598960	<=COMBI	N(52;5)						
6	C(13,1)	13	<=COMBI	N(13;1)						
7	C(39,4)	82251	<=COMBI	N(39;4)						
8	C(13,2)	78	<=COMBI	N(13;2)						
9	C(39,3)	9139	<=COMBI	N(39;3)						

 $h(X \le 2; 52, 5, 13) = [0,221534] + [0,41142] + [0,27428]$ $h(X \le 2; 52, 5, 13) = 0,9072$ ou 90,72%.

Assim a probabilidade de selecionar aleatoriamente no máximo 2 copas é 90,72%

EXERCÍCIOS

1. Determine a probabilidade de obtermos

Distribuição Multinomial

Um **experimento multinomial** é um experimento estatístico que tem as seguintes propriedades:

- 0 experimento consiste de n tentativas repetidas.
- Cada tentativa tem um número discreto resultados possíveis.
- Em qualquer tentativa dada, a probabilidade de que um particular resultado ocorrerá é constante.
- As tentativas são independentes; isto é, o resultado de uma tentativa não afeta o resultado das outras tentativas.

Considere o seguinte experimento estatístico. Você lança dois dados, três vezes e registra o resultado de cada lançamento. Este é um experimento multinomial, porque:

- O experimento consiste de tentativas repetidas. Lançamos o dado 3 vezes.
- Cada tentativa pode resultar num número discreto de resultados 2 até 12.
- A probabilidade de qualquer resultado é constante; ela não muda de um lançamento para o próximo.
- As tentativas são independentes; isto é, obter um resultado particular numa tentativa não afeta o resultado das outras tentativas.

Nota: Um experimento binomial é um caso especial de um experimento multinomial. Aqui está a principal diferença. Com um experimento binomial, cada tentativa pode resultar em dois – e somente dois – resultados possíveis. Com um experimento multinomial, cada tentativa pode ter dois ou mais resultados possíveis.

Função de Probabilidade

Uma **distribuição multinomial** é a função distribuição de probabilidade dos resultados de um *experimento multinomial*. A fórmula multinomial define a probabilidade de qualquer resultado de um experimento multinomial.

Suponha um experimento multinomial que consiste de n tentativas, e cada tentativa pode resultar em quaisquer dos k resultados possíveis: E_1 , E_2 , ..., E_k . Suponha, além disso, que cada resultado possível possa ocorrer com probabilidades p_1 , p_2 , p_3 , ..., p_k . Então a probabilidade p que E_1 ocorra n_1 vezes, E_2 ocorra n_2 vezes, ..., e E_k ocorra n_k vezes é:

$$P = \left[\frac{n!}{(n_1! \dots n_k!)}\right] \cdot \left(p_1^{n_1} \cdot p_2^{n_2} \dots p_k^{n_k}\right)$$

Onde $n = n_1 + n_2 + ... + n_k$.

Os exemplos abaixo ilustram como usar a fórmula multinomial para calcular a probabilidade de um resultado de um experimento multinomial.

EXEMPLO 1

Suponha uma carta de baralho sendo extraída aleatoriamente de um maço de jogo de baralho, e depois então devolvida ao maço. Este exercício é repetido 5 vezes. Qual é a probabilidade de se extraírem 1 espada, 1 copa, 1 ouros e 2 paus? **Solução:**

Para resolver este problema, aplicamos a fórmula multinomial. Sabemos o seguinte:

- O experimento consiste de 5 tentativas, assim n = 5.
- As 5 tentativas produzem 1 espada, 1 copas, 1 ouros e 2 paus; assim n_1 = 1, n_2 = 1, n_3 = 1 e n_4 = 2
- Em qualquer tentativa particular, a probabilidade de extraírem 1 espada, cops, ouros ou paus é 0,25, 0,25, 0,25 e 0,25, respectivamente. Assim, p_1 = 0,25, p_2 = 0,25, p_3 = 0,25 e p_4 = 0,25

Liguemos estas entradas na fórmula multinomial, como mostrado abaixo:

$$P = \left[\frac{n!}{(n_1! . n_2! ... n_k!)} \right] . \left(p_1^{n_1} . p_2^{n_2} p_k^{n_k} \right) = \left[\frac{5!}{(1! . 1! . 1! . 2!)} \right] . (0.25^1 . 0.25^1 . 0.25^1 . 0.25^2) = 0.05859$$

Assim, se extrairmos 5 cartas com reposição de um maço de cartas de baralho, a probabilidade de extrairmos 1 espada, 1 copa, 1 ouros e 2 paus é 0,05859 ou 5,859%.

EXEMPLO 2

Suponha que temos um vaso com 10 bolinhas de gude – 2 bolinhas vermelhas, 3 bolinhas verdes e 5 bolinhas azuis. Selecionamos 4 bolinhas aleatoriamente do vaso, **com reposição**. Qual é a probabilidade de selecionar 2 bolinhas verdes e 2 bolinhas azuis?

Solução:

TMA [DISTRIBUIÇÕES DISCRETAS]

Para resolver este problema, aplicamos a fórmula multinomial. Sabemos o seguinte:

- O experimento consiste de 4 tentativas, assim n = 4.
- As 4 tentativas produzem 0 bolinhas vermelhas, 2 bolinhas verdes e 2 bolinhas azuis; então $n_{\text{vermelho}} = 0$, $n_{\text{verde}} = 2$ e $n_{\text{azul}} = 2$.
- Em qualquer tentativa particular, a probabilidade de extraírem 1 vermelha, verde ou azul é 0,2, 0,3 e 0,5, respectivamente. Assim, $p_{vermelha}$ = 0,2, p_{verde} = 0,3 e p_{azul} = 0,5.

Liguemos estas entradas na fórmula multinomial, como mostrado abaixo:

$$P = \left[\frac{n!}{(n_1! \ n_2! ... n_k!)} \right] \cdot \left(p_1^{n_1} \cdot p_2^{n_2} \dots \cdot p_k^{n_k} \right) = \left[\frac{4!}{(0! \cdot 2! \cdot 2!)} \right] \cdot (0.2^0 \cdot 0.3^2 \cdot 0.5^2) = 0.135$$

Assim, se extrairmos 4 bolinhas **com reposição** de um vaso, a probabilidade de extrairmos 0 bolinhas vermelhas, 2 bolinhas verdes e 2 bolinhas azuis é 0,135 ou 13,5%